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§ 1. Introduction

Let K be a field of characteristic 0, let R be a subring of K which has K as its
quotient field, let G be a finite, normal extension of X and let R’ be an integral exten-
sion ring of R in G. We shall suppose that either R is finitely generated over Z (we
shall refer to this as the absolute case) or R is finitely generated over a field k of
characteristic 0 which is algebraically closed in K (this will be called the relative
case). Let n=2 be an integer. By ®(n, R, R’) we shall denote the set of all polyno-
mials f(X)€R[X] of degree n which are monic and all of whose zeros are simple
and belong to R’. By (R, R’) we denote the set |J & (n, R, R"). Let f be a fixed,

n=2
non-zero element of R. We shall study the sets of polynomials f(X)€®(R, R')
satisfying

M D(f)=8
or more generally
?) D(f)epR*.1

Here D( f) denotes the discriminant of £, i.e. if f(X)=(X—0a,)...(X—a,), then
.D (f) - H (“i —o j)z.

1=i<j=n

We call two polynomials f(X), g(X)€ R[X] R-equivalent if g(X)=f(X+a) for
some a€R and weakly R-equivalent if g(X)=u%* f(X/u+a) for some u€R* and
a€R. The corresponding equivalence classes will be called R-equivalence classes and
weak R-equivalence classes, respectively. If two polynomials £, g are R—equlval_ent then
D(f)=D(g) whereas if f, g are weakly R-equivalent then D(f)=eD(g) with some
g€ R,

In the absolute case Gy&ry [6], [7] proved thatif R is integrally closed in K then
the polynomials f(X)€ ®(R, R’) which satisfy (1) belong to at most finitely many
R-equivalence classes and the polynomials £ (X)€ #(R, R') satisfying (2) belong to at
most finitely many weak R-equivalence classes. Further, in [8] he showed thz}t these
equivalence classes can be determined effectively provided that R, K, G, R’ and f
are given explicitly in a certain well-defined sense (cf. [8], § 2.1). As consequences, in
[8] (cf. also [9]) he obtained effective finiteness theorems for integral elements with

* The research was done at the University of Leiden in the academic year 1983/1984.
12 If R is a ring, then R* denotes its group of units and R* its additive group.
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given discriminant (or which is the same, for irreducible polynomials with given
discriminant) and for power bases over R. In [8], he also established effective results
in the relative case by giving an effective bound for the Degree (cf. [8], § 2.1) of an
appropriate representative of an arbitrary equivalence class. However, these asser-
tions do not lead to finiteness results. For other historical remarks on (1), (2) and for
further references, we refer to [4] and [9].

If R is integrally closed in K then R'NK=R. In the present paper our results
will be established in the more general case when R™* 2 is a subgroup of finite index
in (R'NK)*. We shall derive both in the absolute and in the relative case explicit
upper bounds for the number of R-equivalence classes of polynomials f¢ $(R, R”)
satisfying (1) and for the number of weak R-equivalence classes of polynomials
fEB(R, R') satisfying (2). However, in the relative case we have to restrict ourselves
to non-special polynomials (cf. §§ 3, 5). In both cases, we have attempted to give
bounds which depend minimally on X, R, G, R” and . For example, if in particular
K is an algebraic number field with degree d and R is its ring of integers then our
bounds depend only on 4, [G: K] and the number of distinct prime ideal divisors
of B.

Our results concerning polynomials will be formulated in § 3. In § 4 we shall
deduce similar quantitative finiteness results on integral elements over R with given
discriminant and shall point out that our finiteness assertions do not remain valid
if the factor group (R'NK)*/R* is infinite. As a consequence, we shall give there
among other things a generalisation of a result obtained on power bases in [3], which
states that for every algebraic number field K of degree d the maximal number of
pairwise weakly Z-inequivalent algebraic integers «€K for which {1, «, ..., 09—}
is an integral basis of K is bounded above by a constant depending on d only. Here
o, €K are called weakly Z-equivalent if f=+a+a with some a€Z.

Our theorems will be proved in §§ 5to 9. The proofs are based on some recent

quantitative finiteness results on unit equations, due to Evertse [2] and Evertse and
Gyéry [3].

§ 2. Preliminaries and notations

Let R, be either Z (the absolute case) or a field k of characteristic O (the relative
case) and let K, denote the quotient field of R,. (Thus K,=Q if R,=Z and K=k
if Ry=K). Let K be a finitely generated extension field of K,. In case R,=k we sup-
pose that k is algebraically closed in K. The field K has a finite transcendence basis
over Ky, {zy, ..., z,} say, where g=0. Put K,=K,(z, ..., z,) and R, =Rz, ..., Z,]-
Then K is a finite extension of K;. Put d=[K: K,;]. We have the following diagram:

K
U
R, = Ry[z,, ..., 2] € Ky = Ki(z4, ..., 2,)
U U
Ry C K,

__ Wenote that R, is a unique factorisation domain with unit group Rf={l, —1}
if Ry=Z and R{=k* if Ry=k. Let I denote a maximal set of pairwise non-asso-
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ciated irreducible elements of R,. To every =€l there corresponds a valuation® o,
on K; which is defined by v.(7r)=1 and wv,(a/b)=0 for any a, b€ R; not divisible
by 7. Note that for every a€ Ky there are at most finitely many n€l with o, () 0.
Every valuation v, with €/ can be extended in at most d pairwise inequivalent ways
to K. By replacing these extensions by equivalent valuations if necessary we obtain
a set of valuations my on K with the following properties:

(3) every Vemy has value group Z;

4) if acK* then V(x)=0 for all but finitely many VeEmy;
(5) if € R, then V(a)=0 forall Vemy;

(6) if ac Ry then V(a)=0 for all VeEmy.

In the sequel we shall use the following notations. If T is a subset of my, then we
denote by Or the ring {x€K:V()=0 for all Vem\T}. Note that Or=
={a€K: V(x)=0 for all Vem\T}.

If L/K is a finite extension, of degree p say, then one can construct in a similar
way as above a set of valuations m; on L with value group Z. If we choose the same
transcendence basis {zy, ..., z,} for L, these valuations are, up to equivalence, just
the extensions of the valuations in my to L. If VEmy, W€m,, and if W is equivalent
to an extension of ¥ to L then we say that I¥ lies above V. For every Vémy there are
at most p valuations W¢my lying above V.

The elements of the abelian group generated by my will be called divisors. Thus
every divisor §) can be expressed as

h= 2 VO
Vemg

where the V'(h) are integers of which at most finitely many are non-zero. If «€¢K*
then the divisor () is defined by (¢)= > V(o)V. If K is an algebraic number field

VEm
then there exists an isomorphism €y of the additive group of divisors of K onto the
multiplicative group of fractional ideals in K which is defined by Gk (h)={a€K:
V()=V(b) forall Vemy). €g maps my onto the set of prime ideals in XK.
Let L/K be a finite extension of degree p in a fixed, finite, normal extension G
of K. Let oy, ..., o, denote the distinct K-isomorphisms of L in G and if a€L put
oi(@=0o®, If x=(x,, ..., x,)€LP then

D) = [det(xf)i=y,... o1

denotes the discriminant of x with respect to L/K. It is known that D(x)#0 if and

only if xy, ..., x, are linearly independent over K. If x=(1, «, ..., aP~1) for some
o€ L then we put Dy x(e)=D(x). Then we have
™ Duxl@) = I (@-a).

1=i<j=p

* By a valuation we shall always mean an additive, non-trivial, discrete valuation. By an ab-
solute value we shall mean a non-trivial multiplicative valuation.
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P
Finally, if x=(x;, ..., x,), y=(1, ..., y,)ELP are vectors such that y,;= > &;x;
j=1
for certain ¢&;;€K, then

® D(y) = [det (¢ j);;:i, s g]zD(x).
Let R’ be a subring of L having L as its quotient field. We define the discriminant
divisor Dg(R’) of R’ over K by

V(Dg(R)) = max {0, Jnin V(D(x))} for all Vemy.

By (4) this is indeed a divisor. If K is an algebraic number field and if R’ is the ring
of integers of L then the ideal €4 (D (R")) is just the discriminant of L over K.

Let R be a subring of K and suppose that R’ is an integral extension ring of Rin I
and that R’ is a free R-module with basis w=(w,, ..., ®,) say. Let T be a subset of
my such that Rc@;. If w”is an arbitrary vector in R'? then, by (8),

® D(w')eD(W)R.
Hence
(10) V(Dk(R)) =V (D(W) forall Vemg\T.

§ 3. On polynomials with given discriminant

Let K, Ry, Ky, {z15 ..., 2,}, Ry, K, d, my have the same meaning as in §2
Thus R, is either Z (the absolute case) or a field k of characteristic 0 which is alge
braically closed in K (the relative case). Let G/K be a finite, normal extension of degret
g. Let K;=K,(=Q) if R,=Z and let K, be the algebraic closure of Ky(=k) in G
in the relative case. Let R be a subring of K which is finitely generated over R, anc
which has K as its quotient field. Further, let R’ be an integral extension ring of Rir
G such that

(11 Fi= (RNK*): R*] < .

We note that if R is integrally closed in K then #=1. Further, in the relative case
(11) implies that #=1, i.e. R"NK=R. Indeed, if (in the relative case) R'NK=F
and a€(R'NK)\R then the elements in ak are contained in distinct cosets o:
(R'NK)*/R*. Hence S= .

Let 8 be a fixed, non-zero element of R and let T, 7’ be the smallest subsets o
my such that Rc @, R[f~YcOr. Then, by (4), T, T’ have finite cardinalities, ¢, ¢
respectively, say.

Before stating our results we have to introduce the notion of special polynomials
In the absolute case, every polynomial f(X)€R[X] is called non-special. In the rela
tive case, a polynomial f(X) is called special in R[X]if f(X)€R[X] and if

(12) &) = p h((X + a)"]p) (X +a)’,

where r, ny, 0 are integers with r>0, n,>0, §€{0, 1}, rn,+6=3 and §=0 if n,=1
where a€R, where pu€K* isintegral over R and where h(X)€k[X] is a monic poly
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nomial of degree r with non-zero discriminant* which has its zeros in K, and A (0)50
if np>1. The polynomial f€R[X] is called non-special if it is not of the type (12).
We notice that all polynomials which are weakly R-equivalent to a special polyno-
mialin R[X] must be special in R[X]themselves.

Asin §1, &(n, R, R")(n=2) denotes the set of all monic polynomials of degree
n with coefficients in R and with only simple zeros belonging to R’. Further, we put
d(R, R)= Lsz ®(n, R, R"). By N;(R,R’,B), Ni(n, R, R, B) we shall denote the

number of R-equivalence classes of non-special polynomials f€®(R, R’) and
f€ @(n, R, R") respectively, which satisfy
M D(f)= 4,

whereas by Ny(R, R, B), Ny(n, R, R’, f) we shall denote the number of weak
R-equivalence classes of non-special polynomials f€ ®(R, R’) and f€®(n, R, R)
respectively, which satisfy

) D(f)eBR*.

THEOREM 1. Let n be an integer with n=2. Both in the absolute and in the rela-
tive case we have
(4 . 7g(3d+2t'))n—2

Ni(n, R R, ) S nln—D)——p s,
) _ . (4 . 7g(3d+2t’))n—2
Nz(n, R, R, ﬁ) = {n(n-— 1)}[Ko. I\o](d+t)—-—-———-———-(n_2)!

Let #; be the set of special polynomials in @(n, R, R") satisfying (1) and let
W, be the set of special polynomials in &(n, R, R’) satisfying (2) (n=3). We shall
provein § S that in the relative case #; contains infinitely many weak R-equivalence
classes, provided that R’ 5K, and that #; contains a special polynomial with r=2.
We shall also show that #4 contains infinitely many R-equivalence classes in case k
is algebraically closed and #4 contains a special polynomial with r=2.

We shall now present some consequences of Theorem 1.

COROLLARY 1. Both in the absolute and in the relative case we have
N,(R, R, p) = & exp {8- 7934+,
Ny(R, R, p) = 5 exp {8[K,: Ko](d+1)- 79G4+%7},

Proor. For A=4.7¢@+2%) and for p€Z, p=1, we have, since
{(k+2)(k+ 1)}P=2(p+1)?+5-2 for k=0,

3 (k4D + Dy A5 =200 4170 5 DAy
k=0 : k=0 !

=2(p+1)?-2FePt =SP4,

Hence our assertion follows from Theorem 1.

¢ For a linear polynomial A(X), we put D(h)=1.
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COROLLARY 2. Let y€R. Then both in the absolute and in the relative case
(i) for every n=2 the number of non-special polynomials f€ ®(n, R, R’) which
satisfy (1) and f(0)=y is at most

(4 . 7g(3d+2t'))n-2
D (n=2)! ’

(ii) the number of non-special polynomials fc ®(R, R’) which satisfy (1) and
F(0)=y isat most

n?(n—

exp {8 7934+2),

Proor. The ring R= R’NK is finitely generated over R, (cf. [11], [12]). In the
relative case (11) implies R=R. Further, both in the absolute and the relative case
Rc0r, R[p~c0Op. Since ®(n, R,R)C®(n, R R) and &(R, R)C o(R, R),
it suffices to prove our assertion with R instead of R. The first part of Corollary 2
follows now immediately from Theorem 1, on noting that all polynomials in a fixed
R-equivalence class are of the type f(X)=fy(X+a), where acR and f,is a fixed
representative of this class, and that there are at most n values of a for which f£,(a)=y.
The second part of Corollary 2 follows at once from the first part, on noting that
for A=4.79Bd+2)

o0 k
> (k+2)2(k+1)-kAT = (A8 14A +4)ed = 4.
k=0 !

Corollary 1 already shows that a polynomial f€ (R, R’) which is non-spe-
cial and which satisfies (2) must have bounded degree. More explicitly we have

THEOREM 2. Both in the absolute and the relative case, every non-special polyno-
mial f€ ®(R, R’) which satisfies (2) has degree at most

2+4. 79(3d+2t")

In the absolute case, the finiteness assertions of Theorems 1, 2 and their corolla-
ries above were earlier proved by Gydry [6] (cf. also Gy8ry [7]) under the restriction
that R is integrally closed in K. Effective versions of these results were later obtained
by Gydry [8]. Further, he established in [8] certain effective analogues also in the rela-
tive case.

We shall now specialise our results above to the case of algebraic number fields.
Let K be an algebraic number field of degree d with ring of integers @ and let G/K
be a normal extension of degree g. Let @; be the ring of integers of G. Let BE ON\{0}
and let S={p,, ..., p,} be a (possibly empty) set of prime ideals in K. Let ¢’ denote
the number of prime ideals which belong to S or divide (B).® We call two polynomials
f(X), g(X)€0k[X] weakly S-equivalent if there are a, b, c€ @ such that (b), (c) are
solely composed of prime ideals from S (b, ¢ are units if =0) and such that

so0 = () o).

& {a) denotes the ideal in x generated by o.

Acta Mathematica Hungarica 51, 1988



ON THE NUMBER OF POLYNOMIALS AND INTEGRAL ELEMENTS OF GIVEN DISCRIMINANT 347

COROLLARY 3. Let n be an integer with n=2. Then the polynomials f(X)€
€D (n, Ok, Og) with the property

(13) (D(f)) =By ¥i...pfe
for certain rational integers ky, ..., k, belong to at most
7g(3d+2t’))n—2

4.
{n(n— e w2

weak S-equivalence classes.

For an effective finiteness result concerning the polynomials f¢ &(n, Ok, 0g)
which satisfy (13), see Gy8ry [5].

Proor orF CoroLLARY 3. Let €y be the isomorphism of the group of divisors of
K onto the group of fractional ideals in K (cf. § 2) and let T=CEz*(S). Now Corol-
lary 3 follows at once from Theorem 1 on noting that every polynomial f(X)€
€D (n, Ok, Og) which satisfies (13) also satisfies D(f)€f0F and that two polynomials
fX), g(X)ED(n, Ok, ;) are weakly S-equivalent if and omly if they are weakly
Or-equivalent.

§ 4. On integral elements with given discriminant

Let K, Ry, K, {z15 ---» zq}, R,, K;, d, mg have the same meaning as in § 2.
Let L/K be a finite extension of degree m=2 and let G denote the normal closure
of L over K. Put [G: K]=g. In the relative case (when Ry=Kk) we assume something
stronger than in § 2, namely that k is algebraically closed in G. Let oy, ..., 0,, denote
the distinct K-isomorphisms of Lin G. If a€L then we put a¥=g;(®), i=1, ..., m.
Let R be a subring of K which is finitely generated over R, andlet R'c L be an inte-
gral extension ring of R with quotient field L such that

(11 I =[(RNK)*: R¥] <eo.
If «€R’, then by (7) the discriminant Dy(x) of ais equalto  J] (aP—alD)2

1=i<j=d

Hence if L=K(x) then Dy k(«) is equal to the discriminant of the minimal polyno-
mial of « over K. For that reason we call two elements oy, ax€ R° R-equivalent if
oy=o;+a for some atR and weakly R-equivalent if ay=uo;+a for some a€R,
u€ R*. As usual, the corresponding equivalence classes will be called R-equivalence
classes and weak R-equivalence classes, respectively. If a;, a,€ R” are R-equivalent
then Dy/g(ay)=Dy g () whileif oy, x,€ R’ are weakly R-equivalent then Dy /x ()=
=gDyx (o) with some &€ R*.

Let T be the smallest subset of my such that RC@r. Let Dg(R’) be the discrim-
inant divisor of R’ over K and let f be a fixed element of K*. Let T” be the smallest
subset of my such that RcOp. and V(B)=V(Dg(R")) for all VEme\T”. The sets
T, T have finite cardinalities ¢, ¢” respectively, say. Let M,(R, R’, f) denote the
number of R-equivalence classes of a€ R’ satisfying

(19 Dy =8
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and let M,(R, R, B) denote the number of weak R-equivalence classes of a€R’
satisfying
(15 Dy x(0)€BR*.
THEOREM 3. Both in the absolute and the relative case we have
My (R, R, f) = m(m—1)(4.79Ga+20ym=2, g

My(R, R, B) = {m(m(—= DY+(4. Tos20pm=2. 5.

We note that g=m!. Notice that we have also a finiteness result (without exclu-
sion of “special” integral elements) in the relative case. It is not clear whether such
a finiteness result holds if k is not algebraically closed in G. Finally, we remark that
if S=oco and if there is an «€R’ satisfying (14) (resp. (15)) then M,(R, R, B)
(resp. M,(R, R, p)) is infinite. Indeed, in this case the (weak) (R'NK)-equivalence
class of « in question splits into infinitely many (weak) R-equivalence classes. '

Let Ny ¢ denote the norm with respect to L/K. Then every (R’ K)-equivalence
class of elements of R’ contains at most m elements o for which Ny x(«) assumes some
fixed value. Thus, applying Theorem 3 to M,(R"NK, R’, f) we have

COROLLARY 4. Let y€K. Then the number of a€R’ with Dpjx(«)=p and
Nyx(a)=y is at most

m2(m —1) (4 . J9(3d+ 2t"))m-2.

The above argument shows that Corollary 4 is true without assuming f< .

Let a€R’. Wecall {1,q, ...,a™*} a power basisif {1, ..., a™=1} is a basis
of R’ as a free R-module, If this is the case and if «’€ R’ is weakly R-equivalent to «
then {1, o, ..., «’™~1} is also an R-basis of R’. From Theorem 3 it follows

COROLLARY 5. Those a€R’ for which {l,a,...,«™ '} is an R-basis of R’
belong to at most

{m(m— 1)}"‘*"(4 L oGdreym—2 g
weak R-equivalence classes. ' . o

In [3] (cf. Theorem 11) we derived the bound (4 -79G4+20y"-2 in case R,=Z
and Ris integrally closed in K. If Ry=k and R is integrally closed in K then it is also
possible to get rid of the factor {m(m—1)}¢+* but we shall not work this out here.

In the absolute case, Gydry [6] (cf. also Gyd8ry [7]) proved earlier the finiteness
assertions of Theorem 3 and its corollaries above under the assumption that R is
integrally closed in K. Later he obtained [8], [9] effective versions of these results.
In [8], certain effective analogues have been established also in the relative case.

PrOOF OF COROLLARY 5. Suppose that R’ has an R-basis of the form
{1, ag, ..., ag~*}. This is clearly no restriction. In view of (9), {l,a,...,a™ 1} is
an R-basis of R’ only if

(16) DL/K (“)EDL/K (ao) R*.

By (10), V(Dx(R))=V(Dyx(a)) for all ¥em\T. Now Corollary 5 follows im-
mediately from (16) and Theorem 3 with f=Dpg(x).
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Let K, L be algebraic number fields with rings of integers @, @, respectively,
where Kc L, [K: Q]l=d and [L: K]=m. Let G denote the normal closure of L over
K and put g=[G:K]. Let Dy, denote the discriminant of L over K. For every
2c@, with Dp/e(e)=0 the ideal (Dp/x(@))®Dr/k is the square of an integral ideal,
S () say, which is called the index of a with respect to L/K. Let a be a fixed ideal in
0¢ and let S={ps, ..., ;} be a finite (possibly empty) set of prime ideals in Ox. We
shall now deal with the set of a€@, satisfying

an I(a) = ap’fl...p;“ for certain ky, ..., k,€Z.

We call o, a,€0,, weakly S-equivalent if there are a, b, c€@x with (b), {c) solely
composed of prime ideals from S, such that

= bo;+a

2 ¢ .
If « satisfies (17) then all elements of ¢, which are S-equivalent to « also satisfy (17).
Let ¢ ” denote the number of prime ideals which divide a or belongto S. Then we have

COROLLARY 6. The numbers o€ which satisfy (17) belong to at most
{m (m - 1)}d+t(4 . 7g(3d+2t”))m—2
weak S-equivalence classes.

An effective finiteness result concerning the elements o€ @, satisfying (17) can be
found in Gydry [5].

PRrROOF OF COROLLARY 6. Let 7=CEz*(S) (cf. § 2 and the proof of Corollary 3
in § 3). Suppose that (17) is solvable. Let «, be a solution of (17) and put Dy, k()= .
Then every solution «€@; of (17) satisfies Dyjx(«)€ B0 and two elements oy, €0
are S-equivalent if and only if they are 0r-equivalent. Now Corollary 6 follows easily
from Theorem 3. :

§ 5. On special polynomials

Letk be a field of characteristic 0, let K be a field which is finitely generated over k
and let G/K be a finite, normal extension. As in § 2, we suppose that k is algebraically
closed in K. The algebraic closure of k in G is denoted by K. Let R be a subring of X
which has X as its quotient field (and which is now not necessarily finitely generated
over k). We extend the concept of special polynomials defined in §3 by calling
a polynomial f (X) special in R[X]if f(X)€R[X] andif

(12) FX) = @ h((X+a)y/w)(X+a)’,

where r, ny, & are integers with r>0, n,>0, 6¢{0, 1}, rny+96=3 and 6=0 if n=1,
where acR, where pcK* is integral over R and where A(X) is a monic polynomial
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of degree r with coefficients in k and zeros in K, such that D(h)#0 and h(0)>0 if
ne=>1. If f satisfies (12) then deg f=rn,+06=3 and

(18) D(f) —_ (__ l)rno(no-l)/znanoﬂr(rnu—-l+25)h(0)n°—1+25D (h)"" = 0
(with the convention that h(0)"~'+*=1 if n,=1 and h(0)=0).

LemMA 1. Let n=3 be an integer and let f(X)€R[X] be a polynomial of degree
n with zeros oy, ..., 6,6 G. Then the following statements are equivalent:
(1) fis special in R[X]; .
(i) thereare a€R, A€G* and ¢, ..., ¢,€Ky such that a;=c;A—a (i=1, ..., n);
(ili) there are integers i, j€{1, ..., n} with isj such that for all k€{l, ..., n)
we have (a;— oy)/(0t;— ;)€K .

PROOF. (i)=(ii). Suppose that fsatisfies (12). Let @, ..., @, be the zeros of h(X)
in K, and suppose that ©;<0. Then fcan be written as

fX) = [T ((X+ay—Ou) (X +a.

Choose 1€G* suchthat A"=@,u. Then thereare c,, ..., ¢,€K, such that

fO0) = [] X+a—cd).

This clearly proves (ii). _
(i)=(ii). If a;=c¢;A—a for i=1, ..., n, where acR, A€G* and c, ..., ¢,€K,,
then we have for all triples (i, /, k) with 1=i, j, k=n and i/ that

G—0  CG—Cr
= L EKo.
ai‘—“j ci‘—Cj

(ii)=(ii). Put A=a;—«;. Then we have for k, l€{l, ..., n}

G—0  &—0 “i—“kGK
— 0

G—a; =0y 0—a
hence

(19) O — 0y = Cklj'

for some ¢,€K,. Put a=—(oy+...+a,)/n and ¢,=(c+...+¢,)/n. Then ¢ €K,
and a€R, in view of the facts that f(X)€ R[X] and n~'ckcR. Therefore, by (19),
on taking the sum over all /, we have

o =cgAi—a for k=1,.., n
This proves (ii).
(i{)=(). Let gX)=f(X—a)= ]n] (X—c;A). Then g(X)€R[X]. Let A4 be the set

i=1 —
of ratiqnal ix}tegers msuchthat A"=c{ for some c¢€K, and {cK. It is easy to show
that A4 is an ideal in Z. Since at least one coefficient of g is non-zero, A contains non-
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zero integers. Let ny be a positive integer which generates 4. Let r, § be integers with
n=rny+90 and 0=J<n;. Then g(X) can be written as

(20) gX) = X"+d X —mojr  +d, X0,

where di, ..., d,€K,. Note that D(g)=D(f)0, whence ¢{0, 1}. Choose c€K,
suchthat A"0=cpu where pu€K. Then pisintegral over R. Put h;=d,c (i=1, ..., r),
ROO=X"+hy X"~ . +h,. Since dim=hyi for i=1,..,r and g(X)ERIX]
we have h(X)€ck[X]. By (20) we obtain

h g(X) = wh(X™[WX® (r=>0,ny>0,6c{0, 1}, rny+5 = n).

The zeros of A obviously belong to K,,. It is also clear, by our choice of r, 5, that §=0
if ny=1 and h(0)#0 if ny=>1. Now (i) follows immediately from (21) and f(X)=
=g(X+a).

Let R be a finitely generated subring of K over k which has K as its quotient field,
and let R’ be an integral extension ring of R in G such that R“NK=R. In the lemma
below we shall state some results about the sets of polynomials

¥ = {f(X)ed(n, R, R): f isspecial in R[X] with r =2 and D(f) = B},
¥, = {f(X)ed(n, R, R'): f isspecial in R[X] with r = 2 and D(f)€BR*},
where fis an element of R\ {0} and n=3 is an integer.

LemMA 2. (i) Suppose that K,CR'. If¥; is non-empty then it contains infinitely
many weak R=~equivalence classes of polynomials.

(ii) Suppose that k is algebraically closed. If¥] is non-empty then it contains infi-
nitely many R-equivalence classes of polynomials.

Proor. If K,cR’ (which is also the case if k is algebraically closed) then for
every polynomial f(X)€®(n, R, R’) satisfying (12) we have u€R. Indeed, there
exists a c€K¥ such that cu is the product of certain zeros of f. Therefore cu€R’
and hence p€R’'NK=R. Let ng, r, 8 be integers with n=rny+9, r>0, n>0,
6€{0,1}, =0 if my=1. Let pcR\{0}. Put h,(X)=X—-1)(X-2)(X—6m)X
X(X—8m)...(X—2rm) if r=3 and h,(X)=X-1)X-m) if r=2 (m=12,..).
Let

P =P, 1,6, 1) = {Wh, (XWX’ m=12,..}

We shall show that the polynomials in & are pairwise R-inequivalent. Let foX)=
=ih, (X" /)X, f,(X)=uhy(X™/u)X° be polynomials in & which are weakly
R-equivalent. Then there are a€ R and u€ R* such that

o e (T2 -
= (uu™)h, [—(—X%;‘)Xo—] (X+a)’.

First suppose that n,>1. Then the left-hand side of (22) can be written as X"+
+9, X"~ 4 ..., whereas the right-hand side of (22) can be written in the form
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(X+ay'+o,(X+a)y—"+...=X"+naX""'+... with some y;, 6,€K. Hence g=0,
Therefore, by (22) we have 7

by (X)) X0 = (uu™) by, (X7 pu™) X°
which implies that h,(X)=u""h,(X/u"). Thus the zeros of h,(X) are just equal to

the zeros of h,(X) multiplied by »™. But then w"=1, p=g. Hence f,(X)= £,(X).
Now suppose that m,=1. Then §=0 and r=n=3. Hence, by (22),

ka0l = Gy (X2,

This in turn implies that

23) h(X) = uh, (%Jr-ﬂ%]

Let «y, ..., @, be the zeros of A,(X). By (23) there is an «€K such that wy+a
(i=1, ..., r) are just the zeros of h,(X). Butsince r=3, it follows that u=1, a=0,
Hence p=gq.

Suppose that ¥; is non-empty and let f(X)=puh((X+a)"/u)X? (rny+6=n and
U a, hare as in (12)) be an element of 7;. Note that u€ R\ {0}. By (18), pr(mo-1+20)¢
€BR*. By (18) we have also #=%(n,, r, d, 1) £75. But & contains infinitely many
polynomials which are pairwise weakly R-inequivalent. This proves (i).

Suppose that ¥; is non-empty and let f(X)=ph((X+a)™/u)X°c¥; (r, ng, 8, p, h
have the same meaning as in the proof of (i)). Then (18) implies that

cur(rno—1+26)(__l)rno(no-—l)/znano - ﬂ’ where ¢ = h(o)no_1+26D(h)no # 0.
Put

4
H(O)"°_1+ 26D (H)"“

1/(r(rny+26—1))
] , H*(X) = o H(XJ2)

oz;cx(H):[

for every monic polynomial H(X)ek[X] of degree r with D(H)=0 and H(0)0.
Since k is algebraically closed, H*(X) is also a monic polynomial of degree r with
coefficients in k. Further, H*(0)*—1+®D(H*)"=¢. Hence the set

S* =W (X" Xo:m=1,2,..}

is contained in ¥;. But it is easy to check that all these polynomials are pairwise
R-inequivalent. This proves (ii).

ReMARK. The question whether the set #{ contains infinitely many R-equivalence
classes of polynomials in case k is not algebraically closed seems to be far more diffi-
cult to answer. Moreover, if (1) (resp. (2)) can only be satisfied by special polynomials
with r=1 then it is possible that there are only finitely many (weak) R-equivalence
classes of special polynomials satisfying (1) (resp. (2)).
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§ 6. On units and unit equations

Let K, Ry, Ky, {z1, ..., z,}, Ry, Ky, d, mg have the same meaning as in § 2.
Let T 'be a finite subset of my of cardinality =0. In this section we shall state some
properties of the group 07={0€K: ¥V («)=0 for all Vem\T}.

LemMa 3. () If Ry=Z then OF=W XZ*, where W is the finite group of roots
of unityin K and O0=p=d+1r—1.

(i) If Ry=k and Xk is algebraically closed in K then OX[k*=ZP where 0=
=p=d+t-1.

Proor. First of all we shall prove (ii). There exists a set of pairwise inequivalent
absolute values {| . |,}sca, on K with the following properties (cf. [2], § 3.):

(24) If acK* then |a|,=1 for all but finitely many v€ My and [ |of,=1.
vEM

(25) MK: IKUPK, where IKﬂPKZQ,

where the valuations in the set {—log]|. [,: v€ P¢} are, up to equivalence, equal to
the valuations in my and where the valuations in the set {—log| . |,: v€Ig} are, up to
equivalence, equal to the extensions of the valuation ¥, on K;=k(z, ..., z,). Here
V.. is defined by V.. (F/G)=b—a for all polynomials F, GE R\ {0} of total degrees
a, b respectively.

(26) (a€K: o], =1 for all v€My}=Kk*

Let Sc My be the set containing the v€l; and the v€ Py for which —log]|. |,
is equivalent to a valuation in 7. Let S={v,, vs, ..., v5}. Since I has cardinality =d,
we have s=d+1t. Let §) be the homomorphism from @F to R® defined by

b(x) = (log |aly,, .-, log |al,,).

The elements a of 0F satisfy |a|,=1 for v€ M\ S and Zslog o, =0 (cf. (24)).

. s
Hence kerh=k* and the image of } is a discrete group of rank =s—1. Thus
O3k*=ZP for some integer p with O=p=d+1—1.

We now prove (i). Let k, denote the algebraic closure of Q in K. Put d;=
[k:Ql, do=[K:ky(z, ..., z)). Then dydy=d. Let m{) be the set of valuations in
my whose restriction to k, is non-trivial and let m@=m\mP. Let T,;=TNmQ
(i=1,2) and let ¢; denote the cardinality of T; (i=1, 2). There exists a one-to-one
correspondence between the valuations in m{) and the prime ideals in k, (cf. §2).
Let py, ..., p, be the prime ideals corresponding to the valuations in 7. Then

OrNkg={acky: {a)= p'{l...pf:‘ for certain ki, ..., k,€Z}. By Lang[10], Ch. 5, 03
Nk§=W X Z"*t", where W is the group of roots of unity in Kk, and r is the rank of
the group of units in the ring of integers of k, . The valuations in m@ lie above the
valuations on Ko(zi, ..., z,) which correspond to irreducible polynomials of degree
=lin kyfz, ..., z,]. Hence there exists a set of absolute values {I . lo}oem, satis-
fying the properties (24) to (26) with ko, m{ instead of k, my, respectively. Hence by
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(i), 0F/03Nk§=ZP2 where p, is an integer with 0=p,=d,+1t,— 1. This is true since
07/03Nks C OF,/ks. But this shows that

OF = WXZ'+0+0 = WX ZP

say, where 0s=p=d+t,—~1+dy+t,—1=d+1-1.
Let A, u¢K* We shall now deal with the equation

@7 Ix+py=1 in x, yeOf.

LemMA 4. (i) In the absolute case (27) has at most 4-7%+% solutions.
(ii) In the relative case (27) has at most 2 - T%+% solutions with Ax¢k, pyéKk.

Prook. (i) is exactly Theorem 1 of [3]. In the proof of (ii) we shall use the set of
absolute values {| .| }oem, With properties (24) to (26). Let Sc My be the set of
vE My for which either v€l; or v€ Py and —~log|. |, is equivalent to a valuation in
T. Let s denote the cardinality of S. Note that |«|,=1 for all ac@F and vEM\S.
By Theorem 2 of [2], (27) has at most 2 -7 solutions with Ax/uy¢k. Since s=d+1,
this proves (ii).

§ 7. Preliminaries to the proofs of Theorem 1, 2, 3

Let K, Ry, K,, {z1, ..., 7.}, d, mg have the same meaning asin § 2. Let G/K
be a finite, normal extension of degree g. Let K;=K,=Q if R,=Z and letK, bethe
algebraic closure of K, in G if R,=k. Let R be a subring of K which has K as its quo-
tient field and which is finitely generated over Ry. Let Ry, ..., R, (n=2) be integral
extensions of Rin G and let R=R,NR,N...NR,NK. In this section we shall deal
with the set € of tuples a=(o, ..., @,) with the following properties:

wE€R; for i=1,..,n; flo;X):= ]:"[(X—oci)EK[X];ozi;éocj for 1=si<j=n
i=1

We shall call the tuples a'=(ay, ..., ), a”=(0, ..., 4y)€F R-equivalent if o=
=o;+a for some a€R (i=1, ..., n) and weakly R-equivalent if of=ux;+a for
some a€R, u€R*. The corresponding equivalente classes will be called R-equiva-
lence classes and weak R-equivalence classes, respectively. In the absolute case, every
ac¥ will be called non-special. In the relative case, ac% will be called special if
f(a; X) is special in K[X] (in the general sense defined in § 5) and non-special
otherwise. If in the relative case a=(ay, ..., ®,) is non-special with n=3, then by
Lemma 1 we may suppose that

0 —&;
0y —0lg

(28) ¢K, for some ic{3,..., n}.

Lemmas 5 and 6 below will be used in the proofs of Theorems 1 and 3.
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LemMa 5. Let U=1 andlet n=2 be an integer. Let 6,C% be a set of non-spe-
cial tuples a=(oty, ..., &,) such that for all triples of integers (i, j, k) with 1=i,j, k=n,
i#k, the set

o~ . =0 o
——2: ac¥;, Ry=k th — L K}
{“i—“k ac%, if Ro en % —0, ¢ K,

has cardinality at most U. Then the set of tuples

f(B=9) e
X — g J1=i, j=n

has cardinality at most U~% if Ry=7Z and at most max (1, 2" 2*—1)U"~? if R,=k.

ProOOF. Lemma 5 is obvious if n=2, so we shall assume that n=3. We notice
that o—a;=(oy—o;)—(xy—0;), whence the tuple [(o—0;)/(—0)lisi,j=n IS
completely determined by the numbers (a;—a)/(t;— ) (k=3, ..., n). This proves
Lemma 5 in the case Ry=2Z.

Now suppose that R,=k. Let & be a non-empty subset of {3, ..., n} andlet/
denote the smallest element of &. Let %,(%) denote the set of tuples («y, ..., #,)€%;
such that (o, —o;)/(oy— )¢ K, if and only if i€¥. By (28), %, is the union of all
sets %,(¥), with & being a non-empty subset of {3, ..., n}. Forall a=(a, ..., ®,)€
€%,($) we thus have that (o, —a;)/(t;—a2)¢ K, for €% and (o—o)/(y—0p)é K,
for i€{3,...,n\&. Since (o~ u;)/(0g—)=[(0y—)/(cts— ap)] (g — a)/(oy — o2)],
each tuple ((o;—o)/(0y—))i=i,j=n 1S completely determined by the numbers
(g—0)/(ta—0s) (€F), (y—a)flg—a) (€43, ...,n\&)- This shows that the
set of tuples

{(ﬁi_—_ai]léi,jé”: (ctyy «-es cx,,)é‘gl(y)}

0(1—0(2

has cardinality at most U”~2. But since {3, ...,n} has only 2"~2—1 non-empty
subsets, this proves Lemma 5 also in the relative case.

Let B K* and let y;; (1=i, j=n) be elements of G. We shall consider thesets

%’2={a=(a1,...,a,,)€‘€:5—i——ﬁ=y,.j for 1si<j=n, ][] (ai—ocj)2=ﬂ},
1

—y 1=i<j=n
and
%, =={a= (2 an)e‘g:ﬂ:-o—ti =y; for 1=i<j=n, ][] (oc,-—ocj)zéﬁR*}-
0y — 0ty 1=i<j=n

Let T be the smallest subset of my such that Rc0r, and let ¢ denote the cardinality
of T.

LemMMA 6. If S:=[R*: R*]<o then both in the absolute and the relative case
(i) %, is contained in at most n(n—1)F R-equivalence classes and (ii) %, is contained
in at most {n(n— 1)}iKe:Kl@+0. & weak R-equivalence classes.
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ProoF. We shall call two tuples o'=(a1, ..., %) & =(047, ..., %, )EF R-e
alent if of=af+a for some a€R (i=1,...,n) and weakly (R, R)-equivale
o/ =ux}+a for some u€ R* and a€ R (i=1, ..., n). The corresponding equival
classes will becalled R-equivalence classes and weak (R, R)-equivalence cla
respectively. It is easy to check that every R-equivalence class is contained in at 1
J R-equivalence classes, and every weak (7T, R)-equivalence class is contained :
most ¥ weak R-equivalence classes. Therefore it suffices to show the following:

29) &, is contained in at most n(n— 1) R-equivalence classes,
(30) %, is contained in at most {n(n— )}KeKd@+D weak (R, R)-equivalence cla

For every a=(aty, ..., %,)€%5, put Y(a)=a;—ds, S(@)=(+...+a,)/n. 1
Y(a)€G*, S(e)eK. Further, put Bp:=B/( JI %) Let a'=(og, ..., o)

1=i<j=n
a”= (a1, ..., %, )€¥;. Then

) _ xi—o

GY Vo) T W

Hence

Y@)  «—-S@)
2 V&) T H 5
By (32), &} — { ()/( (a")}ef does not depend on i. Since R=R,N...NR,NK:
we infer that ¥ (&')/¥(a”)€ R* if and only if o, &” are weakly (R, R)-equivalent.

of =uaj+a for some u€R*, acR with u=y (o)) («”). Thus we have the follow
equivalences

for 1=i<j=n

for i=1,...,n

(33) Y (&)=Y (a")=a and a” are R-equivalent;
(34) Y (o) (a")ER* o’ and a” are weakly (R, R)-equivalent.

(29) is an immediate consequence of (33), on noting that for every €%,
have  (a)*®~=p,, whence (a) can assume at most n(n— 1) values.

In the proof of (30) we shall need some further notations. In the absolute ¢
we put K=K, K,=K;, R=R. In the relative case, choose {€G such that K
=Ky(O)=k({) and put K=K({), K;=K,(), R=R[{]. Then RNK=R. Let 4
={1} if Ry=Z and 4,=K} if R,=k. Both in the absolute and in the relat
case, let I'= {u€ G*: w"~D¢ R*} and let T be the set of valuations in my lying ab
the valuations in 7. Then R*cI'c07={0cK:V(0)=0 forall Vemg\T}. ]
p=[Ky: K,]. Then [K:K]=p. Hence T has cardinality at most ptz. Together w
[K:K;]=d and Lemma 3, this shows that I'/4, is the direct product of at most d+
multiplicative cyclic groups, at most one of which is finite. Using also that 4,
CR*CTI and (I'/4,"*~YcR*/4,cT/4,, we obtain

(3%) ([ R*] = [[/dy: R¥[4] = [T/dy: (T/4))"=V] = {n(n~1)}*+7".

_We notice that K/K is a normal extension of degree p. Let o3, ..., o, denotet
distinct K-automorphisms of K, where g, is the identity. For every O€G, Tr(®)
=Trer\T (@) denotes the trace of @ over K and for every @cG*, @ denotes t
coset of @ in the factor group G*/R*. :
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We define the mapping §: €;~G*/R*X {1, ..., n}* by
b)) = (Y (@), irs s 1)

where a=(x, ..., ,)€%; and where i; is the smallest integer k;€ {1, ..., n} suchthat
c’rj(Tr(ozl))=Tr(ockJ) for j=1, ..., p. (It is easily seen that such integers k; exist). If
©€%; then Y (r)"»-V=pj,. Further, the number of cosets g¢ G*/R* with g"*~V=f,
is at most [I": R*]. Together with (35) and the fact that i;=1 for every t€%;, this
shows that the range of ) has cardinality at most

(36) m2=n(n—1)Y+7 = {n(n—1)}P0+,

We shall now show that for o, a”€%,; with h(a)=h(«”) we have Y(a')/
¥ (a”)ER*. Together with (34) and (36) this proves (30). Let a'=(u3, ..., o), &'=
=(of, ..., 0,)€¥5 with h(a)=h(a”). Put u=y(a')/y(a”). Then u€R*. Moreover,
by (32)

_ Tr(e)—gS@)/p _
7 " Teep—eSer o b

Let ¢€{oy, ..., 0,} and let k denote the smallest integer in {1, ..., n} such that
o(Tr ()))=Tr(04), o(Tr(e7))=Tr (o). Then (37) implies that o(u)=u. From this
%

., .

>

it follows that u€ R¥*N K= R*.

§ 8. Proofs of Theorems 1 and 2

Let K, Ry, Ky, {z1, ..., 2}, d, my be the same as in § 2. Let G/K be a normal
extension of finite degree g. Let R be a subring of K which is finitely generated over
R, and which has X as its quotient field and let R’ be an integral extension ring of
Rin Gsuch that F=[(R*"NK)*: R*]<e. Let Bc R\ {0} and let T, T’ be the smal-
lest subsets of m1, such that Rc @y, R[B~c0r, respectively. Let ¢, ¢” denote the
cardinalities of 7, T”, respectively. Let T’ be the set of valuations in mg lying above
the valuations in 7. Let K,=K,=Q if R,=Z and let K, denote the algebraic closure
ofkin G if R,=k. We shall use frequently that ®

(38) [G: Ky(z1, -, 2)] = gd, #(T") = gt.

We shall now apply the results of § 7 with R;=...=R,=R’, where n=2. Define the
sets

Gy={a= (o, ..., ,)€F: f(a; X)€P(n, R, R), f(2; X) is non-special in K[X],

D(f (s X)) = B}
G5 ={a= (o, ..., 4,)€EF: f(a; X)éP(n, R, R), f(2; X) is non-special in K[X],

D(f(a; X))EBR™Y,

¢ For any finite set H, # (H) will denote the number of elements of H.
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where % has the same meaning as in § 7, but with R,=...=R,=R’. We note that if
o', a” are (weakly) R-equivalent tuples in %5 then f(a’; X), f(a”; X) are (weakly)
R-equivalent polynomialsin @(n, R, R’). Let N; denote the number of R-equivalence
classes of tuples in ,, while N, denotes the number of weak R-equlvalence classes of
tuples in ;. Let Ny(n, R, R’, f), N.(n, R, R’, ) be the same as in Theorem 1. Then

Ny

(39) N R K, )= 200, Ny(n, R R, f) = =20

(n=-2)1’
For n=2 this is obvious. If n=3, then (39) follows immediately from the fact that
for every polynomial f(X)€®(n, R, R') there are at least (n—2)! pairwise weakly
R-inequalent a€% with f(X)=f(a; X). Indeed, let «;, ..., «, be the zeros of fin R',
Let g, 7 be two distinct permutations of (3, ..., n) andlet o= (o, tg, Xazys -oes Uogny),
0" = (0, Oy, Ougyy -evs Oamy). Then the tuples ((“1— Uiy (01— 0g))i=3, ... s
(Cotg— oty 1)) /(0 — ®5))i=3, ..., are distinct which easily implies that o/, a”  are not
weakly R-equivalent.
In view of (39), Theorem 1 is an immediate consequence of the following propo-
sition.

ProPOSITION 1. We have
\=n(n—1)(4. 76202, 5 gpd  N,= (n(n-— 1))lKo=Kol(4+t)(4 N ES ) Ll

PROOF. Since R’ is an integral extension of R, all tuples a=/(c,, ..., a,)€%; have
the property that o;—o;€07r={0€G: ¥V (0)=0 for all V¢ meN\T'} for all i, j¢
€{l, ..., n} with isj. Together with (38), Lemma 4 and the relations

oci—azj_l_aj—ozk =1
0 —0  o—0 ’

this shows that for each triple (i, j, k) with 1=, j, k=n and ik, the set

%=y, ai—aj — . _ }
{ai__“k. (fxla ey “n)E%s, ai a—; QKO lf 'RO = k

has cardinality most 4 if Ry,=Z and at most A/2 if R,=k, where 4=4.75@+2),
But this in turn implies, together with Lemma 5, that both in the absolute and the
relative case the set

) }
—_— : 5 eees 0)ED,
{(“1‘“0‘2 1si,j=n (& )€ Es

has cardinality at most 4"~2 Now Proposition 1 follows immediately from Lemma 6.
PROOF OF THEOREM 2. Let f(X)€ &(R, R’) be anon-special polynomial in R[X]

which satisfies (2). Suppose that f has degree n=3 and zeros a, ..., x,€R . We
shall use that

(40) —a;€07 for i,je{l,...,n} with i ]j.
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First of all suppose that R,=Z. Note that

Otl-—w o; — 0o .
S iy 2 =1 for i=3,..,n
=0y 030Uy

and that the numbers (o; —e;)/(0;— o) (=3, ..., n) are pairwise distinct. Hence by
1_emma 4, (38) and (40) we have

n—2 = 4.790+),

Now suppose that R,=k. Further, we assume that (o;—o5)/(e;—)¢K,
(where K, is the algebraic closure of k in G), which is by Lemma 1 no restriction. Let
& be the subset of {3, ..., n} consisting of those i for which (o~ 0;)/(0,— 0t)§ K.
By (38), (40), (41) and Lemma 4 we have

# (&) =2. 796+,
If i€{3, ..., NN\ then (o;—o;)/(0;—05)§ Ky. Hence by (40), the identities

Oy —; + o —

278 1 (i€f3, . INS),
*g

o —0g Oy —
(38) and Lemma 4, we have also

#({3, ..., IN\F) =2. 1964+,
Together with (42) this shows that also in the relative case

n—2 = 4. 7004+,

§ 9. Proof of of Theorem 3

Suppose that K, Ry, Ky, {z1, ..., 2.}, Ry, Ky, d, my have the same meaning as
in §2. Let L be a finite extension of K of degree m=2 and let G denote the normal
closure of L over K. Put g=[G: K]. In the relative case we assume that k is alge-
braically closed in G. Let R be a subring of K which is finitely generated over R; and
which has X as its quotient field. Let R’ L be an integral extension of R having L
as its quotient field and suppose that F=[(R'NK)*: R*]<e. Let oy, ..., 0, be
the K-isomorphisms of Lin G. For a€L, put aP=g;(2) (i=1, ..., m). Let Dg(R")
be the discriminant divisor of R’ over K. Let T be the smallest subset of m such that
RC0r and let ¢ denote the cardinality of 7. Let f€K* and let T” be the smallest
subset of my such that T<T” and V(f)=V(Dg(R') forall VEm \T”. Let1” be
the cardinality of 7”. Further, let T” be the set of valuations in mg lying above the
valuations in T ”. We shall use frequently that

(43) [G: K]=gd, #(T")=gt"

If a€ L, a will denote the tuple (¢, ..., a™). We shall use the same notations as in
§ 7, however with n=m, R;=0;(R’) for i=1, ..., m and R=R'NK. We shall deal
with the sets of tuples

%= {a: a€R, Dyx(@) = B}, 6, = {o: a€R’, Dyx(®)€fR™}.
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We assert that if %, is non-empty then ¥ (8)=V (Dg(R)) for every Vem\T.
Indeed, let a€ R’ such that a€%,. Since Dy (x) is integral over R, hence V(f)=
=V (Dyx(@)=0 for all VEm\T. Together with (7) and the definition of Dy(R))
this proves our assertion.

LemMA 7. Let oy, ay€ R’ such that oy, 0,€%,. Then for i#j with 1=i, j=p

M) _ gD _
g—t—.——ié@}@, = {u€G*: V() =0 for all VeEm\T"}.
azl)_aél)
PROOF. Let ¥ be a fixed valuation in mg\ T” and let o, €R’ such that
oy, 0€%;. Then Dyjx()=0, hence {1,a,...,a™ '} is a K-basis of L. We infer

m

that there are &, ..., £,6K such that a,= 3 &;af~% For i€{l, ..., m}, let y=
j=1
=(1, &, ..., 7% o, i tt, .., o 1). Then we have by (8) that

1 0
44) D(y,) = det®|¢, fi_ m| Dk () = E8Dpx(oy) for i=1,..,m.

o 1
But by the definition of T” we have W(Dypx(0q))=W (B)=W (Dk(R)) for all
Wem\T" and by the definition of Dg(R’) we have W (D(y))=W (Dg(R) for

all Wem\T”. Together with (44) this shows that V' (£)=0 for i=1, ..., m. But
then we have, since V(a{?)=0 for i=1, ..., m,

(&) _ gD m @Ye—1 _ (o ())k—1 m k—2
X" —0y ) V[ (eg?) (oq”) ) V( (D)\k=2-1(. (j) 1]
222 )= > - - — > > & o =0.
(d{l) —Ot](.") k=2 6" OC](.” —Otfl) k=2 =0 ék( 1 ) ( 1 )

We can show in asimilar way, by interchanging a;, oy, that ¥ ((ef? — {?)/(af? — 0§)) =
=0. Hence V((of? —o)/(af? — «{"))=0. This proves Lemma 7.

We shall now prove Theorem 3. We remark that two numbers «;, a,€ R’ are
(weakly) R-equivalent if and only if the tuples o, a, are (weakly) R-equivalent. Hence
in view of Lemma 6 it suffices to prove the following proposition :

o — oD
PROPOSITION 2. The set of tuples ¥ = { [

2O _ @ : dé%} has cardinal-

)léi,jén
ity at most
(4 79 Ga+2Yym—2

PRroOF. For convenience we put B=4.7964+%") et ¢, be a fixed element of
%,. We put A;=of’ —af® for 1=i, j=m with i=j. Further, for every a€R’ we
put X;;(@)=(D—aW)/k; for 1=i,j=m with i Then for every a€%, we
have by Lemma 7 that X;;(«)€ 07-. By Lemma 4, (43) and the relations

Ay Xi@ | Ay Xjp(o) o
—_ —_— =1 A 1’ e , . k ,
A Xp(o) Ay Xy(o) (i, ), ke { m}, i 5 k)
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we have that for each triple (i, j, k) with 1=, j, k=m, i=k, the set

-y aO gD
2 g ¥ Gtk if Ry= k}

has cardinality at most B if R,=Z and at most -;—B if Ry=k. In the absolute case,

Proposition 2 is an immediate consequence of Lemma 5. In the relative case we infer
that ¥ contains at most max (1, 2"~2—1)(B/2)"~? tuples for which « is non-special
(ie. f(a; X) is non-special in K[X]). We shall now estimate the number of tuples
in 7" for which & is special.

Let a€%, such that a is special or, which is the same, the minimal polynomial
f(X) of « is special in K[X]. Then m=3. Further, there are integers r, n,, § with
r>0, ny=0, 6€{0,1}, rny+dé=m and 6=0 if ny=1, and there are ackK, puck*
and a monic polynomial A(X)€K[X] of degree r with D(h)50 such that

SX) = i h((X +a)o/p)(X+a)’.

But since f'is irreducible we have that 6=0 and h is irreducible. Furthermore, & has
its zeros in G and k is algebraically closed in G. Hence r=1. Therefore there exists
a w'€K* such that

J(X) =X +a)"—u.

Let ¢ be a fixed, primitive m-th root of unity and let @ be a fixed m-th root of y’.
Then o«W=9p%0—a for i=1,...,m, where (k,,...,k,) is a permutation of
(1, ..., m). Hence the tuple

(ot(i)—ot(j)) _ ( oki— ij)

alt) —o® 1=i, j=m di—g% iz, j=m

belongs to a set of cardinality at most m!. But this shows that the number of tuples in
¥ for which a is special is, in view of m=g, at most

ml = 2.7mm=2) =< (B/2)" 2.
Therefore, the total number of tuples in ¥ is also in the relative case at most B"~%.

REMARK. We notice that a weaker version of Theorem 3 can be deduced also
from Theorem 1.
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